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Synthesis of the fully functionalized nine-membered diyne core
of the C-1027 chromophore
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Abstract—We report the synthesis of the fully functionalized seco-acid of the C-1027 chromophore. The key reaction is a
LiN(TMS)2/CeCl3-promoted acetylide–aldehyde condensation to construct the highly strained nine-membered diyne. Appropriate
functionalization of the substrates significantly affects the yield of the cyclization. The present findings will be the basis of further
studies toward the total synthesis of the C-1027 chromophore.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1. Structure of the C-1027 chromophore (1).
C-1027 is a member of the subset of chromoprotein anti-
tumor agents that are composed of protein and small-
molecule (chromophore) components.1,2 The C-1027
chromophore 1,3 when separated from the binding pro-
tein, has extremely limited stability in solution and has
been shown to undergo spontaneous cycloaromatization
in the absence of any activator. This high reactivity, cou-
pled with structural features such as the chlorocatechol-
containing ansa-bridge with atropisomerism, the highly
strained bicyclo[7.3.0]trienediyne, the appended benzo-
oxazine,4 and the aminosugar5 contribute to making
the synthesis of 1 a formidable challenge.6–8

We planned to construct the aglycon moiety of 1
through macrolactonization at C169 and formation of
the nine-membered ring by linking C5 and C6 (Fig. 1).
Cyclization of the nine-membered ring could be induced
with a 1:1 mixture of LiN(TMS)2 and CeCl3

10 in THF, a
reaction previously shown to be practical with simple
substrates.6a,11,12 However, the feasibility of this reac-
tion, particularly given the highly complex structure of
1, was uncertain. Here, we demonstrate the synthesis
of a fully functionalized diyne core bearing the b-tyro-
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sine moiety through efficient nine-membered ring forma-
tion of a judiciously selected intermediate.

Construction of the bicyclo[7.3.0]diyne core began with
the previously reported aryl ether 2 (Scheme 1).9,13 The
intermolecular Sonogashira coupling14 of 2 with 3 af-
forded the adduct 6. The acetylenic TMS of 6 was selec-
tively removed in the presence of the four O-silyl groups
using TBAF at �55 �C to generate 7 in 77% yield over
two steps. Liberation of the primary alcohol from
DMTr-protected 7 was realized with ZnBr2 to afford 8
(64% yield) without affecting the other acid labile pro-
tective groups (MOM, TMS, TES, TBS, and Boc). Alco-
hol 8 was smoothly oxidized to aldehyde 9 using Dess–
Martin reagent15 in 95% yield. However, treatment of 9
with LiN(TMS)2 and CeCl3 produced the cyclized prod-
uct 10 in only 13% yield.
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Figure 2. ROESY correlations of 17 (500MHz, CDCl3).
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Scheme 1. Reagents and conditions: (a) DIBAL-H, CH2Cl2, �78�C; (b) NaBH4, EtOH, 0 �C, 82% (two steps); (c) PivCl, DMAP, Et3N, rt, 100%; (d)

3 (1.3equiv), Pd2(dba)3ÆCHCl3 (30mol%), CuI (30mol%), i-Pr2NEt, DMF, rt; (e) TBAF, THF, �55�C, 77% (7, two steps) from 2, 52% (12, two

steps) from 5; (f) ZnBr2, CH2Cl2, 0 �C, 64% (8), 61% (13); (g) Dess–Martin periodinane, CH2Cl2, rt, 95% (9), 90% (14); (h) (Boc)2O, DMAP, CH3CN,

40�C, 72%; (i) LiN(TMS)2 (30equiv), CeCl3 (31equiv), THF (2mM), �20�C to rt, 13% (10), 0% (16), 82% (17).
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We therefore redesigned our substrate in an effort to
improve the cyclization yield. The C16-ester of 9 was
replaced with its reduced form in order to eliminate
acidic a-protons that could cause undesired side reac-
tions. Stepwise reduction of ester 2 led to alcohol 4, the
pivaloyl protection of which afforded 5 in 82% yield over
three steps. Sonogashira-coupling between 3 and 5, fol-
lowed by TBAF treatment, resulted in 12 (52% yield
for two steps). Selective removal of the DMTr group of
12 using ZnBr2 then produced primary alcohol 13. After
conversion of 13 to aldehyde 14, LiN(TMS)2/CeCl3-pro-
moted cyclization was attempted, but this led only to a
complex mixture with no desired product 16.

Masking the acidic C18-NH of 14 had a dramatic effect
on improving the cyclization yield. Introduction of
another Boc group to the C18-nitrogen of 14 using
(Boc)2O and DMAP afforded bis-carbamate 15 (72%
yield), and subsequent treatment of 15 with LiN(TMS)2
(30equiv) and CeCl3 (31equiv) in THF gave rise to the
nine-membered diyne 17 in 82% yield as a sole isomer.16

The difference in the cyclization yields of 9, 14, and 15
clearly demonstrate that removal of acidic protons is
crucial for this base-promoted condensation.

The stereochemistry of the newly formed secondary
alcohol of 17 was unambiguously determined by a RO-
ESY experiment (Fig. 2). Interestingly, upon formation
of the nine-membered ring, the TES group at the C4-OH
of 15 was intramolecularly transposed to the C5-hydroxy
group of 17, thus indicating the spatial proximity
between the C4- and C5-hydroxy groups. Diyne 17
was chemically unstable upon heating (t1/2 = 3h in
C6D6 at 50 �C), which is similar to previously synthe-
sized model compounds.17

As shown in Scheme 2, the new substrate design for the
cyclization was successfully applied to the differentially
protected compound 18, which was prepared through
a similar route to 15. When bis-Boc protected 18 was
subjected to the LiN(TMS)2/CeCl3-mediated cyclization
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Scheme 2. Reagents and conditions: (a) LiN(TMS)2 (26equiv), CeCl3
(28equiv), THF (2mM), �30 �C to rt, 78%; (b) DIBAL-H, CH2Cl2,

�85�C, 70%; (c) Dess–Martin periodinane, CH2Cl2, rt; (d) NaClO2,

NaH2PO4, 2-methyl-2-butene, t-BuOH/H2O (5:1), 72% (two steps);

(e) PPTS, MeOH, rt, 45%.
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conditions, nine-membered diyne 19 was isolated as a
single isomer in 78% yield. Subsequent DIBAL-H reduc-
tion of 19 simultaneously removed both Piv and Boc
groups to generate mono-Boc alcohol 20. The primary
alcohol was then oxidized to the corresponding carboxy-
lic acid 21 via a two-step protocol: (i) Dess–Martin peri-
odinane treatment; and (ii) NaClO2 oxidation. Finally,
the primary TBS group at C14 of 21 was selectively re-
moved using PPTS in MeOH, leading to the fully func-
tionalized seco-acid 22 (45% yield).18,19

In conclusion, the highly strained nine-membered diyne
22 possessing the b-tyrosine moiety was synthesized
via LiN(TMS)2/CeCl3-promoted acetylide–aldehyde
condensation. The key feature in this synthesis is
the exploitation of a variety of protective groups that
enabled not only the timely exposure of suitable func-
tional groups, but also the effective cyclization of highly
functionalized substrates (15 and 18). Further studies on
the total synthesis of the C-1027 chromophore based on
the above findings are currently underway in this labora-
tory.
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